
DDCO
UNIT - 3

CLASS NOTES

feedback (corrections : vibha@pesu.pes.edu
,ma µaµ,

Vibha Masti
© vibha’s notes 2020

FINITE STATE MACHINES
continuation

• Mathematical foundation for sequential logic circuits

° Consists of two blocks - CL and state block

c- only combinational

④ logic elements

←
each arrow represents

wires[.÷÷¥÷i÷÷÷÷:*:*.
I

specifically,
D- flip flops

°

Any sequential logic circuit from a counter to a

complex microprocessor) can be represented as an FSM

° Fundamental concept in CSE

° In AFLL
,
nodes and edges , but to implement, this

° this diagram lacks input g output

° Two types - Mealy type and Moore type FSMs

Vibha Masti
© vibha’s notes 2020

Question

A snail crawls down a paper tape with l 's and O's
.

The snail smiles whenever the last 2 digits it
has crawled over are ol . Design Moore and mealy
machines

.

Moose

c input -4 output , output q state)

output = I → smile
o → no smile

O

f I

reset
,

eg: 10010

• as long as we are in a state
,
op is constant

state Transition table

"

÷÷÷.⇒÷÷÷÷÷÷÷÷:÷:

Vibha Masti
© vibha’s notes 2020

Binary Encoding Method

so - 00

g
States

,
do not

S
,
- 01 confuse with

Sz - to flip flop names

.÷:÷*⇒÷÷÷:
Logic

s
, so x s

,
'

so
'

y

:÷÷l::tO l

l O O l

l O O O

s ,
'

Sox§ 00 Ol l l l O

S ,
'
= So 2L

Vibha Masti
© vibha’s notes 2020

"

So ' = I

'

÷

.

Vibha Masti
© vibha’s notes 2020

meaty

reset

%

÷

currentqstatet-nqputqext.gs#ateuotguty
O

÷÷l÷o
s
'
= JI TSI = I

y = sic

Vibha Masti
© vibha’s notes 2020

ONE HOT ENCODING

. Same number of flip flops as States
- Binary encoding: log,Hates) flip flops

Question

Implement the lift problem (Moore a mealy) with one

hot encoding

Moore

swi¥p For

A
switch-up

A
reset →④
onto f f on-floor

switchup
①c-①
O O
Foor switch - up

Vibha Masti
© vibha’s notes 2020

State Encoding Table

¥÷÷÷÷÷
Output Encoding tables

° on-ground

• on- first

. lift-up

Vibha Masti
© vibha’s notes 2020

° lift -down

State Transition table

o
8

O
O

O
O

O

⑤
O
O

O
O

O
O

• Not using K-maps CG inputs)
° We have only learnt 4 variable K-maps
- can be minimised using Boolean identities

Vibha Masti
© vibha’s notes 2020

S
,

' (SOP)

55255switch-upon-floortsjszs.TTswitching on - floor t

Sz5255 switch-Tpton.fr t
53525,5 switch-up 1-ontor t

(Boolean identities)

= sjszsjsoswitch-up-tsssis.SI onftoor

we know through one -hot encoding that at any
given time , only one of the 4 inputs is high CD

= Sz switch t s
,
onftoor → much simpler than

Binary encoding

Sj = s
, on- floor t Sz switch-up

Sj = So switch-up t s , Ohftoor

Sq
'

= Soswitch t so on-floor

Vibha Masti
© vibha’s notes 2020

Output Table

at yo

go Z1

on -ground -

- so

on - first = Sy

lift-up
= s ,

lift- down -- Ss

logic circuit +
T

- T
3 G

T o

S3 s
,

¥⑥ µ
51 So

° critical path delay for next state logic is reduced
e output logic simplified

Vibha Masti
© vibha’s notes 2020

Mealy

oh.FI/lift - down ¥04 lift-up

A
on - floor . switch-up / lift - up f)

reset →①-
① toh-floor.switch.us#t-down

on -floor switch on-ground on-floor switch up Ion - first

State Encoding table

¥It4Eno,dgiyg
Output Encoding tables

° on-ground

• on- first

Vibha Masti
© vibha’s notes 2020

• lift-up

• lift -down

state Transition Tablet Output

currentstate Input Next state output
S
, so on - floor switch - up

S
, So on -ground on-first lift- up lift-down

O l O O O l O O O l

O l O l O l O O O l

: : :/ : : : : : : :
I O O O l O O O l O

l O O l l O O O l O

l O l O O l O O O l

l O l l l O O l O O

outputs

on-ground = Soon-floor. switch-up

on- first = S
,
- on- floor - switch -up

lift-up
= Sion - floor -1 So - on - floor - switch-up

lift- down = So -

oh- floor -1 S
,
- on- floor. switch -up

Vibha Masti
© vibha’s notes 2020

One Hot Encoding Method

• no . of bits = no . of States
. so → 001

) gaited
"

Fine
,

S
,
→ 010

Sz -7 100 I bit is hot

Questions

A snail crawls down a paper tape with l 's and O's
.

the snail smiles whenever the last 2 digits it
has crawled over are ol . Design Moore and mealy
machines

.

Use one hot encoding.

Moore

&&q:sis8i:i,:oI O O O O l O l

l O O l O O l l

O

f I

reset
, -0,

eg: 10010

Vibha Masti
© vibha’s notes 2020

si -- sis ,In
= six lower critical

" %! ! """ + """t)
""" """

so
'
= Is, Sok t sz5, six
= Sox t Szk

y = 52550 It 525507C
= Sz

Meaty

%

reset

÷
Sf 01
S
,
-710

:÷i÷:

Vibha Masti
© vibha’s notes 2020

S
,

'
' si soit si SIE
= SoIts

,
I

so
'
= 5

, so k t
s
,Jo X

-

- Sokt Spc

y = s
,Ix

= Spc

Question

sequence detector → Ill

o "

¥
"

Moore

0

A

←

of ti

i

Vibha Masti
© vibha’s notes 2020

"

÷÷÷:l"÷÷÷
"

y
-

-
S
, so

meaty

ni
"

rT

Vibha Masti
© vibha’s notes 2020

Question

Traffic light controller (FSM)

Bravado Blvd
.

° TWO sensors : TA , TB
t

. Two lights : t ' ↳Aademic
Ave

.

LA LA

TA TA

TFTB
° Clock : every 5 seconds
° Reset button for known initial state (green- academic are ,
red- bravado blvd .)

° LA 143 are outputs cred , yellow , green) based on inputs from
TA ITB

° While Ta is 1
,
La remains green

e when TA becomes 0
, LA becomes red and 43 is green

• Starts collecting data from TB , not ta .

Moore TA
-

n
.

reset so TA
s ,

→ →
La yellowLA green n 43 red

43 red / ↳ red t
-

43 green
La green④ gDTB43 yellow LA LB

Vibha Masti
© vibha’s notes 2020

State Encoding Table

State Encoding

:Sz 10

Ss 11

State Transition table

current state Inputs Next state

SiSo-AT#

:f:YiI O X O l l

l O X l l O

l l X X O O

output Encoding table

Vibha Masti
© vibha’s notes 2020

Output Table

÷:±÷i÷÷:÷:
YI
.

I
'

Ii so

¥
. no

÷:#

Vibha Masti
© vibha’s notes 2020

REVERSE ENGINEERING

. Given a logic circuit , determine FSM

Question

Reverse engineer the following circuit

Al Ao Ik

µI
un""

moore type

Sf SoEi
Input States : Ao le Ai

) inputs
current States : s , g so

Clb rows)

Next States : S
,

'

g so
'

Output : unlock

Vibha Masti
© vibha’s notes 2020

Next state Logic

l l l l

° Next state never reaches 11
. we can therefore eliminate the current state 11 rows

. whenever current state is 10
,
next state is always

O O O O O

O O O O O

Vibha Masti
© vibha’s notes 2020

S
,

'
= ST So AT Ao

so
'
-

- I To A , Ao

unlock = S
,

state Encoding and output

sta÷qiyoutO l O

l O l

FSM

A- f-3

A A =3

reset
,

-
A f- I

-

Vibha Masti
© vibha’s notes 2020

COUNTERS

a clock period of 2GHz frequency is 0.5ns
. Measure I keep time based on clock cycles
^ counters are Moore type FSMs having nodes arranged in

a circle

° No inputs required

count count

n
.

n.
reset ¥

,

count / f. count
④'

count

① 0
count cott

INCREMENTER COUNTER

n-Bit counter

° From 0 to 2h - I
• Every clock cycle we need to store the current clock value and

then increment it every clock cycle .

Vibha Masti
© vibha’s notes 2020

Storing n bits

• n d - flip flops with a common clock

° n - bit register

n- bit incrementer

when

count --O
,

same

output

l l l l
l l

,
l

l l

,
I '

ds da di d:

Vibha Masti
© vibha’s notes 2020

"

xt
° only stores incremented value when Uk -- T

DECREMENTOR COUNTER

"

-bitd÷÷÷.

Vibha Masti
© vibha’s notes 2020

Applications

I . Iterations in logic design C nxn-bit shift - add multiplier requires n
iterations)

2
. Interrupt timers (schedulers in OS)

3. Software timeouts (loading webpage)

Question

construct a combined incremental decrementer counter

← Uk

qIII

countTallie

I . Approach : use a mux to either increment or decrement

Uk

increment
• counter

I
count

O

decrement

counter

incldec

Vibha Masti
© vibha’s notes 2020

count

inc

2. Different approach

combined HAIHS

mine
.

.

D
.

. .

d

:
90

BEBE
mmmm mm AHA

Vibha Masti
© vibha’s notes 2020

3
. Using FS Ms if inc -- I

, up
inc -- o

,
down

Count

f) count
,
inc

L

→ 001
→ Oy

reset 00 -
01

Count.int 7

Wiant, f t
, count

,

count
,
inc

int

count , in
L

ly → 101

count
,
inc

State transition Table

current state Inputs Next state output
s
,
Ct) Solt) count inc Sifted Soft -11) 2

, Zo
O O O X O O O O

O O l O ① ① o o

O O l l O ① O O

O l O X O ① o l
o l l O O O O l
o l l l ① O O l

l o O X ① O l O

l O l O O ① I O

l O l l ① ① I O

l l O X ① ① l l

l l l O ① O l l

l l l l O O l l

Vibha Masti
© vibha’s notes 2020

output

Zo = Solt)
Z
,
= S , (t)

Next state
countinc

Skt) softy
00 01 11 10

00 O O O /

o ' O O l O

" e

lo l l l O

S,CttD= cott silt)t Sect) Solt)inTt silt) incl

Solt) count incl

W count int

K-map count inc

Skt) softy
00 01 11 10

00 O O de
ol l l O O

11 ① O O

lo O O IM

soft-11) = - Count Solt) t Solt count

Vibha Masti
© vibha’s notes 2020

Logic circuit

•

count
• o

inc

• &

U a

U U

l

S
, So

-

Z,
Zo

sit -11) = cott S
,
Lt) t s , Ct) Solt)int t s,Ct)soft) inc t

Sitt Solt) count in c t

W Solti count int

-- counts
,et) t s , Lt) (Solt

)④ in c] t Sitt) count
(Solt)④ing

=

So CttD= -

a Count Solt) t soft count = count ④ So Ct?

Vibha Masti
© vibha’s notes 2020

ARBITRARYMODVLUSCOUNTERT.tl
to k - I

• select 2n
- '
L K L 2n

• start with an n-bit (modulus 2n) incrementing counter
• ability to detect when the count value has reached k- I
• ability to reset the value to 0 when k- I is reached

Approach

° D - flip flops with reset
° And gate for k- I
• some inputs may need to be inverted (minterm)

Question

k -- 5 CO - 4
,
o -4 .

. .) counter

Count sequence : 000
,
001
,
010

,
011
,
100

,
000 .

. .

2 3

2 L 5 c 2

when 929,90--100 , reset signal

Vibha Masti
© vibha’s notes 2020

Settableflipflop

° when set -- I
,
value stored is I

• else as usual
° used in ring counters

Ringcounter
. if reset signal applied , all d flip flops become

0 and no counting happens.

° one settable flip flop used with reset signal
• n - modulo counter

↳ → →
I

C C o

o initial value: 001
o next clock cycle : 100
. next clock cycle : 010
° next clock cycle : 001

° Also called one -hot counter (just like one -hot encoding)

Vibha Masti
© vibha’s notes 2020

• seems less efficient in terms of space , but faster clock

speeds attainable

n-BitJohnsuer

. initial value : 001 I

0. next cycle : 988
46)I 10

111 7

011 3

001 I

000 O

Vibha Masti
© vibha’s notes 2020

DEMULtiplexers.LT

MUI

logic circuit

data →
← output

inputs-2

T
control

input
o -- Joo tji ,

DEMI

outputs
logic circuit

←

→ 1
input

Tontine
%

-
-Ji

o
,
-

- ji

v data direction opposite

Vibha Masti
© vibha’s notes 2020

I:4Dem

[
outputs

µ " = "" "

input

02 -

- ji i

0
,
= joi

L

Oo -

-Jiji

[
control

inputs

I:4demuxusingl:2demu

s"""

if
.

T e
control inputs

Vibha Masti
© vibha’s notes 2020

linden

° no . of outputs --n ← ceiling
• no . of control inputs = login))
o no . of inputs =L

° similar to mvx where no
.
of inputs = n

,
no . of control

inputs = T login)7 ,
no . of outputs -- I

Question

construct a l : 5 demux using
Ca) l : 2 demuxes

(b) AND
,
OR and NOT gates

(a) Oo -

-j Joi
O , =jTJ, joi
Oz =jTj , joi
Oz = jj , jo i

04 -

- ja

- Oo

- o
,

i# o
,

- O
,

HT
"

j , j , jo

Vibha Masti
© vibha’s notes 2020

:

¥¥÷:
-

f.↳
(b) AND

,
OR and NOT gates

÷:÷÷÷÷÷÷÷÷÷i
"

÷
.

÷:

Vibha Masti
© vibha’s notes 2020

Memoryrtrrays
• high - level arrays : name t index (software)
• 2 operations : read array location

,
write at location

e implementation in hardware)

Read ← operation
x = a Ci] ;

performed

T
at RHS

input = index

write

acid -

- x;

tinputt input -- data
-
- index

. index : software
,
addr : hardware (address)

• size of index (software) → 32 bit int leg)

• size of index (hardware) → 8 bit Cl byte) E 256
→ 9 bit → E 512

° generally , for n memory locations , I
-

log, n 7 bits for

address

Vibha Masti
© vibha’s notes 2020

Simplestmemorynrray
8 memory locations

,
I - bit storage

° 8 d- flip flops with enable used to store values at 8

. daioffereinntpuhfscatiaornes common
° address : 3 bits

.dk

⇒
i

..

-

Vibha Masti
© vibha’s notes 2020

• called random access memory

8 memory locations, 16
-bit words

8 word x 16 bit
8×16

16 flip flops w

common Uk Eg

common eh

memory Port

• set of signals that provide readywrite access

° one ready write port : addr, Wr, din and dont

Vibha Masti
© vibha’s notes 2020

Carry - lookahead Eg Prefix Adder

e Evaluate performance by estimating area and time requirements

For 2- input AND/OR1×012 gates
• Area of each AND

,
OR , XOR gate estimated to be ag

° Propagation delay of every 2-input gate estimated to be tg

For K- input AND/ORHOR gates
• Area -

- CK-Dag
• Propagation delay = Hog zk7 tg → tree design , like MVX

=D-

Ripple carry Adder area and time

=D-¥7

!
Sum : I 3- input gate

•

carry : 52
- input gates

Area requirements
• n-bit ripple carry adder occupies Mag area

Time requirements
• Propagation delay from co to Cn -i
• signal passes through three gates in each of the n - I stages
° delay = Scn -D tg

° sum computation : 2tg time required for 3 input XOR gate

° n-bit ripple carrier takes Con - 1) tg time

Vibha Masti
© vibha’s notes 2020

° To reduce delay , carry - lookahead Eg prefix adders

° Computation time increases linearly with no . of gates (very slow)

• speed can be improved by eliminating the carry chain

compute carry Values Directly from ai le bi

C , = aobo t AoCo t bolo
= Ao bot Caotbo) co

Cz = a , b , t Ca , tb ,) c ,
= a , b , t laitbi) Caobot Caotbo)co)
= a , b , t Ca ,tb ,) aobo t Caitbi)Caotbo) co

Let us make the following substitution to simplify

gi
-
- ai bi

pi = Ait bi

Vibha Masti
© vibha’s notes 2020

←
1
←

it

4 = got Poco] I = 4
4-

I

Cz =

g , t p , got p, poco
= 10

G -

- Gz t pzg , t P2p , go t P2p, Poco
= 18

4 =

93 t 17392 + Pzpzg , t Ps Pap , go t Pzpr pi Poco
= 28

why p Eeg?

Consider ↳
° Gz = Azbz

• if a2=1 Ee b , =/ , C
, is guaranteed to be high

• i
. g stands for generate

• pz -- Azt bz

• if carry is generated at 2 4 propagated to 3 , ez is high
• if carry is generated at t g propagated to 2 Ee then 3

,

Cz is high

°

. :p stands for propagate

Vibha Masti
© vibha’s notes 2020

Circuit Diagram

° bubbles g inverters can be ignored
• here

,
I - 4 Ee not O -3

° complexity increases from 1 to 4

• From left to right , complexity increases very rapidly

Vibha Masti
© vibha’s notes 2020

Performance Estimate

• for c , , 4 gates required 4

for Cz
,
10 gates total

6

for ez , 18 gates total 8
for Cq , 28 gates total 10

e for ci , no . of gates required is 2it 2 greater than gates
required for Ci- I

• So ici -13) gates required from c
,
to Ci n't 3N for c , to in

° Each three input XOR gate counts as 2 gates

° S
,
→ 2 XOR

Sz -7 2XOR] 2nSz → 2XOR

so,
→ 2XOR

• n -bit carry lookahead adder would require n't 5h gates

Time Estimate

c, = got Pico
Cz =

g , t p , got Pi Poco
Cz = Gz t pzg , t P2p , go t Papi Poco
Cy =

Gz t pzgz + Pzpzg , t Ps Pap , go t Pzpr pi Poco

critical path delay depends on

D pi and gi computation

. tg time required for 2-input AND/OR gate

Vibha Masti
© vibha’s notes 2020

2) carry computation delay
° time required for ci depends on i

°

longest delay: en-i term
° delay for minterm Pn -z Pns .

.
. Poco is longest Hast minterm)

• time required tlogzcn)Itg for n- input AND gate
•

delay for the OR of all minterms requires 1- login)Itg
time

3) Sum computation
.

2tg time for 3- input XOR gate

Total delay

2510g zCn77tgt3tg

Performance comparison

M Con-Dtg
As

• time increases as logan , which is must faster than a

ripple carry adder

• area increases as h2 which is difficult to scale

Vibha Masti
© vibha’s notes 2020

Hybrid Approach solution

• split adder into a number of blocks
• use carry lookahead technique to add bits in each block

• blocks combined together using ripple carry technique

• 32 - bit adders use 4-bit blocks

CMSBS) (LSBS)

T T

4-bit sum 4-bit sum

• Better speed than ripple carry adder and better space than

carry- lookahead

Further optimisation

° Critical path : ao , bo , Cin to S3 ,
° Therefore

, Cz , Cy , . . . , Ca, need to be computed quickly save

space° Not essential to compute so to Sso quickly ←
• can use ripple carry inside each block to compute sum outputs
° Use CLA only for Cz , Cy , . . . Cay in each block

Vibha Masti
© vibha’s notes 2020

full
adders
-

rippleI
carry adder
for co - Cz

g.
setting

[
Cin requires T reduce no . of

only 2 gates gates for Cin

coat = gzt pzgzt pzpzg , t pzpzpl go t PsPapi Polin

= gzt pzcgztpzg , + P2P190) + PsP2P ' Polin
, cin

takes longest
= gst Pz Cgztpzlg ,t p ,go)) t pzpzp , po Cin to come from

previous block

can be computed
ahead of time

Vibha Masti
© vibha’s notes 2020

Critical Path Delay
• Three parts
D compute all p 's and g's

2) carry needs to propagate from co to Ca,
3) compute sum S3 ,

all tpg's
1) Time taken to compute various p a g values

y
at

L once

•

compute pi G gi Cosi E 4) in each block in time tpg

• Compute g, :O in each block in time tpg-block
y computed

gi
-
- ai bi pi

-
- ait bi paraHelly

2) Time taken for carry to propagate from co to Cay

• In each block
, Cin propagates through one AND Ee one OR block

in time t
AND-OR

° Since carry propagates in the above manner through first
seven blocks

,
time required is 7 tanD.or C 0,3, . . .

277

3) Time taken to compute Sz,

° Once Cay is available, needs to propagate through four full
adders

,
each of which takes time tea

° Time required is 4tea

critical Path Delay

tea = tpg t t pg-block t HAND-or + 4tFA

Vibha Masti
© vibha’s notes 2020

Generalising

° N - bit adder using K-bit blocks
•

1¥ blocks each of size K used

toLA = tpg + tpg-block + (Nz - t) tAND-op t k TFA

Parallel Prefix Adder

• Requires less area than CLA

• Faster than RCA

Parallel Prefix Incrementor

° Simpler than adder
• In order to understand

°

Ripple carry incrementor

Vibha Masti
© vibha’s notes 2020

Using Gates

without inc signal
. inc always 1

Incrementer carry chain
• only carry chain
°

assuming 2-input gate takes time tg and area ag
•

carry chain : Cn-Dag and Cn -D tg

Vibha Masti
© vibha’s notes 2020

° Given n inputs Io
,
it , iz , . . . in. , and n outputs Oo , Oi , Oz . . . On - ,

Oo = Io

O
,
= ioi

,

Oz = Ioi, iz

:
/

On- , = Ioi , iz . . . in,

• Each output statement computed based on inputs so far (prefix of input
sequence) called prefix problem

Parallel Prefix computation of Incrementer carry chain

° 16 - inputs
1. Assume it works for 8 inputs

• Extend to lb bits
in - between

° Solve using recursion
wires

I
]

magic block
magic block

(works for 8) (works for 8)

Vibha Masti
© vibha’s notes 2020

° In - between wire at position 8

Og = ioi , iz - - - is (by definition)

Oy = ioiciz . . .
i
,

i . Og -
- Oz is

° We AND all the in- between wires with o,

2. Assume it works for 4 inputs

magic 4 magic 4 magic 4 magic 4

04--034 (by definition)

• Perform the same AND operation

Vibha Masti
© vibha’s notes 2020

3. Assume it works for 2 inputs

magic2 magic2 magic magic 2 magic 2 magic2 magic 2 magic 2

02=0, in Cbg definition)

. Perform AND operation again

4. Assume it works for 1 input

Vibha Masti
© vibha’s notes 2020

5 . For 1 - input , Oo = to

Jtg
Jtg

Jtg

Jtg

° Due to parallel computation , only 4tg time required

• Oz is not computed using Oz , but it is computed with the
results of ioi , COD and iz is

• Reduces ripple dependencies (time)

• Area : 4×8=32 AND gates (each row has 8 gates)

Generalising

° M2 AND gates per row
• logan rows

y ceil for

Area-- (nm (logan) ag non - powers
Time = Cogan) tg

Vibha Masti
© vibha’s notes 2020

Parallel Prefix Incrementor

carry
XOR extra tg

(only
Not gate for 1 input ← ai

)

carry
a

prev carry AND ai

d
- - -

carry
← XOR

ai

o Area less than n
' of CLA

Vibha Masti
© vibha’s notes 2020

Parallel Prefix Applicability
°

Only works for associative functions
a - Cb - c) = (a - b) -C

4-BIT RIPPLE CARRY ADDER

Gates

Cz
(3 (

4

C ,

Si = ai t bi t Ci

Cit,
= 9.bit bfi t C ,-Ai = aibit Ci Caitbi)

° is it associative ?

Vibha Masti
© vibha’s notes 2020

Generate g Propagate

gi
-

- carry generated in position i
gi
-
- aibi

pi
-

- carry propagated in position i

pi
-

- ai t bi

Citi = gi t pi Ci

go.it ,
= Gi + Pi go :c.

Po : it , = Pi poi

Citi = Go : itt

BOMBA, BR RE's

afoot:BMA:B Gata •BBaf:3

C
, Cz Cz

Associative operation

<

times operator

Cpi , gi) x Cpj , g.D= Cpipj , git pig j)

Vibha Masti
© vibha’s notes 2020

for i -4
, j -- O

Agata, Ba RE's

afoot:BPigj
- MAS Gondi GABBA:3

gi

(pig;) X Kpj , gj) x Cpk , gid)

(lpigi) x Cpj , gj)) X Cpk , ga

single cell for X computation

Vibha Masti
© vibha’s notes 2020

Parallel Prefix for x

2 inputs g 2 outputs

Parallel Prefix Adder

,
xor gate

Cmany errors in slide diagram)

gig

(
4

Go po9' Pl

computes pi 4 gi

Vibha Masti
© vibha’s notes 2020

Critical Path Delay

• computation of pi and gi : tpg
•

pi :j
and gi : j computation : tpg - prefix

• si computation : txor

tpa =

tpgt Clog,N) tpg -prefix t txor

Question to

compare time delay of 32 bit CLA (4 -bit blocks) and 32 bit
Ripple carry adder

tea = 300ps tz-input
-10

tray = 300×32 = 9.6ns

tua tout = tpg + tpg-block + (Nz - t) tAND-op t k TEA

go, Po - - - gz , Pz → can be parallel

-
- tpg time = 100ps

← 6 gates
tpg-block (go :3 , guy . - -) = Gx 2-input delay

= 6×100 = 600ps
+
AND- or

= 2×100 = 200ps

tan. -- loot 600T 7×200+4×300
= 3.3ns

Vibha Masti
© vibha’s notes 2020

Question 11

Symmetric Boolean function

only combination of 1 's g O 's matters
, not

permutation

Question 12

Construct decoder from demux

Do 0
c- = I o

→

0
,

01

S S

demux decoder

Question 13

construct demux from decoder

]
, 00

→ a

•)
0
(

s i

decoder s

Vibha Masti
© vibha’s notes 2020

Question 14

Using 2's complement representation, f - bit

(a) - O to 255 Co - 128 to 128

Ebt - 128 to 127 Cd) - 127 to 127

Question 15

Using unsigned representation , 10 -bit number can represent
numbers from

O - 1023

Question 16

How many 2- input gates are required for constructing
2:L MUX?

3 gates (3 Nand gates)

Vibha Masti
© vibha’s notes 2020

