DDCO UNIT - 3 CLASS NOTES

feedback (corrections :

FINITE STATE MACHINES

continuation

- Mathematical foundation for sequential logic circuits
- · Consists of two blocks CL and state block

- ° Any sequential logic circuit from ^a counter to ^a complex microprocessor) can be represented as an FSM
- ° Fundamental concept in CSE
- · In AFLL, nodes and edges, but to implement, this
- ° this diagram lacks input g output
- ° Two types - Mealy type and Moore type FSMs

Question 1

^A snail crawls down a paper tape with l's and ^O's . The snail smiles whenever the last 2 digits it has crawled over are ol . Design Moore and mealy machines .

Moore

state Transition table

Binary Encoding Method

$$
\begin{array}{c}\n s_0 \longrightarrow \text{one} \\
s_1 \longrightarrow \text{one} \\
s_2 \longrightarrow \text{one} \\
\end{array}\n \begin{array}{c}\n \text{states} \\
\text{confuse with} \\
\text{flopnames}\n \end{array}
$$

$= 8\overline{z} + s\overline{x} = \overline{x}$ $|7)$

 $S2C$ \overline{z} Y

© vibha's notes 2020

ONE HOT ENCODING

-
- . Same number of flip flops as States Binary encoding: log, Hates) flip flops

Question 2

Implement the lift problem CMoore & Mealy) with one hot encoding

Moore

Output Encoding tables

° on-ground

• on- first

. lift-up

° lift -down

State Transition Table

• Not using ^K-maps CG inputs)

- We have only learnt 4 variable K-maps
- \bullet can be minimised using Boolean identities

 $s_3\overline{s_1s_6}$ switch-up + on-floor + s_3 _{525,5} switch-up + on-Hoor +

(Boolean identities)

= $\overline{s}_3 s_2 \overline{s}_1 \overline{s}_0$ cwitch-up + $s_3 \overline{s}_2 \overline{s}_1 \overline{s}_0$ on-floor

we know through one -hot encoding that at any given time , only one of the ⁴ inputs is high CD

 $=$ s_2 switch-up + s_3 on-floor \longrightarrow much simpler than Binary encoding

 $s_{\texttt{b}}^{\texttt{b}} = |s_{\texttt{I}}|$ on-floor + $s_{\texttt{b}}$ switch-up

 S_3 = S_0 switch-up + S_1 on floor

Sq \int_{1}^{1} = s_o switch-up + so on-floor

© vibha's notes 2020

Output Table

Mealy

State Encoding table

Output Encoding tables

• on-ground

• on- first

• lift-up

• lift -down

state Transition Table + Output

outputs

on-ground ⁼ Soon-floor. switch-up $on_First = s_1 \cdot on_floor \cdot switch_up$ lift up = s, on - floor + s_o on - floor switch up
lift -down = s_o on - floor + s, on - floor switch -up

One Hot Encoding Method

- \cdot no. of bits = no. of states
	-
- $\begin{array}{ccc} \cdot & s_{0} \longrightarrow & \text{OO1} \\ s_{1} \longrightarrow & \text{O1O} \end{array}$ at any
 $s_{2} \longrightarrow & \text{O1O} \end{array}$ given time,
 $s_{2} \longrightarrow & \text{O1O} \end{array}$ is hot
	-

Question 3

A snail crawls down a paper tape with I's and O's.
The snail smittes whenever the last 2 digits it machines use one not encoding

Moore

 $s_1' = s_1x + s_0x$ $S_1 = \bar{S}_1 x + S_0 x$

 $y = s_1 s_0$

Question 5

State Encoding Table

State Transition Table

output Encoding table

Output Table

REVERSE ENGINEERING

· Given a logic circuit, determine FSM

Question 6

Reverse engineer the following circuit

Next states: S, & So

Output: unlock

```
Next state Logic
```


· Next state never reaches 11

. we can therefore eliminate the current state ¹¹ rows . whenever current state is ¹⁰ , next state is always

- $S_1^2 = \overline{S_1} S_0 \overline{A_1} A_0$
- $S_0^3 = \overline{S_1} \overline{S_0} R_1 R_0$

 $unlock = s_1$

state Encoding and Output

FSM

COUNTERS

- a clock period of 2GHz frequency is 0.5ns
-
- . Measure I keep time based on clock cycles ^ counters are Moore type FS Ms having nodes arranged in a circle
- · No inputs required

INCREMENTER COUNTER

n -Bit counter

- \cdot From 0 to $a^n 1$
- Every clock cycle we need to store the current clock value and then increment it every clock cycle.

Storing ⁿ bits

- n d-flip flops with a common clock
- ° n-bit register

l

'

4-bit incrementer counter

incremented value when $dk = 1$ only stores \bullet

DECREMENTOR COUNTER

4-bit decrementer counter

Applications

- I. Iterations in logic design (nxn-bit shift-add multiplier requires n iterations)
- 2. Interrupt timers (schedulers in OS)
- 3. Software timeouts (loading webpage)

Question 7

construct a combined incrementar/decrementer counter

I . Approach: use a mux to either increment or decrement

2. Different approach

Combined HA/HS

State transition Table

output

 $Z_0 = S_0(t)$ $Z_1 = S_1(t)$

Next state

 $S_1(k+1) =$ count $S_1(k) + S_1(k) S_0(k)$ inc + $S_1(k) S_0(k)$ inc + $s_1(t)$ $s_2(t)$ count inc + s_1 (ϵ) s_0 (ϵ) count inc

© vibha's notes 2020

ARBITRARY MODULUS COUNTER

- \cdot 0 to k-1
	- \cdot select $a^{n-1} < a < a^n$
	- · start with an n-bit (modulus 2ⁿ) incrementing counter
	- · ability to detect when the count value has reached k-1 • ability to reset the value to ⁰ when k-I is reached

Approach

- ° D flip flops with reset
- · And gate for k-1
- some inputs may need to be inverted (minterm)

Question 8

 $k = 5$ $C_0 - 4, 0 - 4, ...$ counter

Count sequence: 000, 001, 010, 011, 100, 000...

$$
2^2 < 5 < 2^3
$$

when $a_2a_1a_0$ = 100, reset signal

Settable Flip Flop

- · when set =1, value stored is I
- else as usual
- · used in ring counters

<u>Ring</u> Counter

- . if reset signal applied, all d flip flops become 0 and no counting happens.
- ° one settable flip flop used with reset signal
- n -modulo counter

- · initial value: 001
- · next clock cycle: 100
- . next clock cycle : ⁰¹⁰
- ° next clock cycle : ⁰⁰¹

· Also called one-hot counter (just like one-hot encoding)

· Seems less efficient in terms of space, but faster clock speeds attainable

n-Bit Johnson Counter

- · initial value: 001 \mathbf{I}
- · next cycle : 000
	- $\mathbf 0$ 100 4 $\mathbf{6}$ 110 $\overline{1}$ \mathbf{u} $\overline{3}$ 011 \mathbf{I} 001 000 $\overline{0}$

Demultiplexers

© vibha's notes 2020

1:4 demux using 1:2 demuxes

$1:n$ demux

- . no. of outputs =n
- . no. of control inputs = $\lceil \log_2(n)\rceil$
. no. of inputs = 1
-
- · similar to mux where no. of inputs = n, no. of control inputs = $\Gamma log_2(n)$, no. of outputs=1

 ϵ ceiling

Question 9

construct a 1:5 demux using Q $1:2$ demuxes (b) AND, OR and NOT gates

© vibha's notes 2020

Memory Arrays

- high level arrays : name t index (software)
- 2 operations: read array location, write at location
- e implementation in hardware)

write

- a[i] = x; t_{input} input = data - - index
- · index: software , addr: hardware Caddress)
- · size of index (software) → 32 bit int (eg)
- size of index $chardware) \rightarrow 8$ bit (1) byte) ≤ 256 \rightarrow 9 bit \rightarrow \leq 512 8 bit (1 byte) ≤ i
9 bit → ≤ 512
- generally, for n memory locations, \lceil log, ⁿ ⁷ bits for address

Simplest Memory Array

- 8 memory locations, 1-bit storage
- · 8 d-flip flops with enable used to store values at 8 different locations

dk

- · clock inputs are common
- address: 3 bits \bullet

memory Port

- set of signals that provide readywrite access
- ° one read) write port: addr, wr, din and dout

Carry - lookahead Eg Prefix Adder

^e Evaluate performance by estimating area and time requirements

For 2-input AND) ORIXOR gates

- · Area of each AND, OR, XOR gate estimated to be ag
· Proposation delays also assignment agte estimated
- · Propagation delay of every a-input gate estimated to be tg

For K-input AND/OR/XOR gates

- · Area = CK-Dag
- Propagation delay = $rlog_2$ k7 tg \rightarrow tree design, like MUX

 \Rightarrow

 $\overline{\mathcal{F}}$

=D-

Ripple Carry Adder Area and Time

- · Sum: 1 3-input gate
• Carn: 5 3-input gate
- Carry: 5 2-input gates

Area requirements

• n-bit ripple carry adder occupies 7n a_g area

Time requirements

- Propagation delay from co to Cn - i
- · signal passes through three gates in each of the n-1 stages
- délay = 3Cn-1) tg
- ° sum computation : 2tg time required for ³ input XOR gate
- ° ⁿ-bit ripple carrier takes Con 1) tg time

- To reduce delay, carry-lookahead & prefix adders
- · Computation time increases linearly with no of gates (very slow)
- speed can be improved by eliminating the carry chain

Compute Carry Values Directly from ai & bi

 $c_1 = a_0 b_0 + a_0 c_0 + b_0 c_0$ $=$ $a_0 b_0 +$ $Ca_0 + b_0$) c_0

$$
c_2 = a_1b_1 + (a_1+b_1)c_1
$$

= $a_1b_1 + (a_1+b_1)(a_0b_0 + (a_0+b_0)c_0)$
= $a_1b_1 + (a_1+b_1)a_0b_0 + (a_1+b_1)(a_0+b_0)c_0$

Let us make the following substitution to simplify

gi - -ai bi pi ⁼ Ait bi

© vibha's notes 2020

- if a_2 =1 Ee b2 =1, C3 is guaranteed to be high
- ∙ ∴g stands for <mark>generate</mark>
- · p₂ = a₂ + b₂
- . if carry is generated at 2 & propagated to 3, c₃ is high
- \cdot if carry is generated at 1 & propagated to 2 & then 3. Cz is high
- ° . : p stands for <mark>propagate</mark>

Circuit Diagram

- ° bubbles g inverters can be ignored • bubbles & inverters can
• here, 1-4 & not 0-3
-

- ° complexity increases from 1 to ⁴
- From left to right , complexity increases very rapidly

Performance Estimate

- · for c₁, 4 gates required 4 for c_2 , 10 gates total 6 $for c_3$, is gates total 8 for Cq , ²⁸ gates total ¹⁰
- for c_{i,} no of gates required is 2i*t* 2 greater than gates required for c_{i-1}
- . So i(i+3) gates required from c, to c; n^{2+3n for c, to cn}
- ° Each three input XOR gate counts as ² gates
- \cdot $s_i \rightarrow$ 2 xor $S_2 \longrightarrow 2 \times 0R$
 $S_3 \longrightarrow 2 \times 0R$ | | 2n
	- $s_8 \rightarrow 2x$ OR
 $s_9 \rightarrow 2x$ OR
- n -bit carry lookahead adder would require ⁿ't 5h gates

Time Estimate

$$
c_1 = g_0 + p_1 c_0
$$

\n $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$
\n $c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$
\n $c_4 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0$

critical path delay depends on

D pi and gi computation

. tg time required for 2-input AND/OR gate

© vibha's notes 2020

2) carry computation delay

- ° time required for ci depends on i ° longest delay: en-i term
-
- · delay for minterm p_{n-2} p_{n-3} ... poco is longest Clast minterm
· time required <mark>Tlog_z cn)7 tg</mark> for n-input aND gate
-
- · delay for the OR of all minterms requires <mark>(log₂ (n)] t</mark>g time

3) Sum computation

. 2tg time for 3- input XOR gate

Total delay

 $2\sqrt{100}$ $2(n)$ tg + 3tg

Performance comparison

- time increases as log_an, which is must faster than a ripple carry adder
- area increases as h2 which is difficult to scale

Hybrid Approach solution

- split adder into a number of blocks
- use carry lookahead technique to add bits in each block
- blocks combined together using ripple carry technique
- 32- bit adders use 4- bit blocks

• Better speed than ripple carry adder and better space than carry - lookahead

Further Optimisation

- ° Critical path : ao , bo , Cin to S3,
- · Therefore, c3, c₁, ...,c₂₇ need to be computed quickly save
- Not essential to compute s_o to s₃₀ quickly computer in the
- Can use ripple carry inside each block to compute sum outputs
- . Use CLA only for $c_3, c_7, ... c_{27}$ in each block

Critical Path Delay

- Three parts
	- i) compute all p's and g's
	- $2)$ carry needs to propagate from c_0 to c_{27}
	- 3 compute sum s_{31}

1) Time taken to compute various p & g values

- Compute p; & g; COsis4) in each block in time <mark>t</mark>pg
- Compute 93:0 in each block in time tpg-block
a: = a: k: a = a a: distinct a = a angle parallelly
	- $g_i = a_i b_i$ pi $a_i + b_i$ parallelly
- 2) Time taken for carry to propagate from c_0 to c_{27}
	- In each block, c_{in} propagates through one AND & one OR block in time t_{and-or}
	- ° Since carry propagates in the above manner through first seven blocks, time required is <mark>7 t_{and-or} (0,3,...27)</mark>
- 3) Time taken to compute s_{31}
	- ° Once Cay is available, needs to propagate through four full adders, each of which takes time t_{FA}
	- Time required is 4t _{FA}

critical Path Delay

 t_{CLA} = t_{PQ} + $t_{PQ-block}$ + 7 t_{AND-OR} + 4 t_{FAP}

all tpg's

 $a +$ once

 $\sqrt{2}$

Generalising

-
- N-bit adder using K-bit blocks
• <u>N</u> blocks each of size k used blocks each of size K used
	-

$$
t_{cLA} = t_{pg} + t_{pg-block} + (N-1) t_{AND-OR} + K t_{FA}
$$

Parallel Prefix Adder

- Requires less area than CLA
- Faster than RCA

Parallel Prefix Incrementor

-
- ° Simpler than adder In order to understand
- ° Ripple carry incrementor

Using Gates

Incrementer carry chain

-
- only carry chain ° assuming 2-input gate takes time tg and area ag carry chain : Cn-Dag and Cn -^D tg
-

· Given n inputs i_0 , i_1 , i_2 , ... i_{n-1} and n outputs o_0 , o_1 , o_2 ... o_{n-1}

$$
0_0 = i_0
$$

\n
$$
0_1 = i_0 i_1
$$

\n
$$
0_2 = i_0 i_1 i_2
$$

: /

$$
0_{n-1} = i_0 i_1 i_2 \cdots i_{n-1}
$$

• Each output statement computed based on inputs so far (prefix of input sequence) called prefix problem

in-

Parallel Prefix Computation of Incrementer Carry Chain

- ° 16 inputs
- 1. Assume it works for ⁸ inputs
	- Extend to lb bits
	- · Solve using recursion

° In-between wire at position ⁸

$$
0_{\delta} = i_0 i_1 i_2 \cdots i_{\delta} \quad \text{Cby definition}
$$
\n
$$
0_{\gamma} = i_0 i_1 i_2 \cdots i_{\gamma}
$$

$$
\therefore \quad 0_8 = 0_7 \, \dot{\iota}_8
$$

° We AND all the in-between wires with ^o ,

2. Assume it works for 4 inputs

• Perform the same AND operation

3. Assume it works for 2 inputs

- 02 = 0, in Cby definition)
- . Perform AND operation again
- 4. Assume it works for 1 input

© vibha's notes 2020

5. Fo**r 1**-input, 0₀= i₀

- ° Due to parallel computation, only 4t_g time required
- Oz is not computed using Oz , but it is computed with the results of i_0 i₁ (0₁) and i_2 i₂
- Reduces ripple dependencies (time)
- Area: 4×8=32 AND gates (each row has ⁸ gates)

Generalising

- ° M2 AND gates per row
- logan rows

 $Area = (n/2)(log_2 n)$ ag α non-Time = Cogan) tg

y ceil for non-powers

© vibha's notes 2020

Parallel Prefix Applicability

° Only works for associative functions $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

4-BIT RIPPLE CARRY ADDER

Cenerate & Propagate

pi = carry propagated in position i

$$
c_{i+1} = g_i + p_i c_i
$$

$$
90 \div 1 = 90 + P_0 90 \div 1
$$

 $\mathcal{L} = \mathcal{L}$

$$
P_{0:i+1} = P_i P_{0:i}
$$

$$
c_{i+1} = 9_{o:i+1}
$$

Critical Path Delay

- computation of pi and gi : tpg
- pi :j and gi : j computation : tpg-prefix
- <u>• Si computation: t_{xor}</u>

$$
t_{\text{PA}} = t_{\text{PG}} + \frac{(\text{log}_2 N)}{k_{\text{PG}} - \text{prefix}} + t_{\text{xOR}}
$$

Question 10

Compare time delay of 3a bit CLR (4-bit blocks) and 32 bit
\nRippie carry adder
\n
$$
t_{PR} = 300 \times 3a = 9.6 \text{ ns}
$$

\n $t_{RLA} = 300 \times 3a = 9.6 \text{ ns}$
\n $t_{CLA} = t_{Pg} + t_{Pg-Wock} + (\frac{N}{k} - 1) t_{AND-OR} + K t_{PR}$
\n $90.70 \cdots 93.73 \rightarrow \text{Can be parallel}$
\n $= t_{Pg} + time = 100 \text{ ps}$
\n $t_{Pg-Dlock} = 6 \text{ so} t_{Pg-U} + K t_{PR}$
\n $= 6 \times 100 = 600 \text{ ps}$
\n $t_{RND-OR} = 2 \times 100 = 200 \text{ ps}$
\n $t_{CLA} \approx 100 + 600 + 7 \times 200 + 4 \times 300$

© vibha's notes 2020

Question II

Symmetric Boolean function

only combination of 1's G o's matters, not permutation

Question 12

Question 14

Using 2's complement representation, 8-bit

 $(a) -0$ to $a55$ CO - $128 + 128 + 128$ EB -128 to 127 (d) -127 to 127

Question 15

Using unsigned representation , 10 - bit number can represent numbers from 0 – 1023

Question 16

How many 2-input gates are required for constructing 2:1 WUX?

3 gates (³ Nand gates)